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Disclaimer    
 

This report was prepared exclusively for The Coastal Douglas-fir Conservation Partnership 
(CDFCP) by 3GreenTree Ecosystem Services Ltd. The quality of information, conclusions, 
estimates, and projections contained herein were prepared in good faith and consistent with 
information available at the time of preparation, data collected by the authors and/or supplied 
by outside sources, and assumptions, conditions and qualifications which may or may not be 
described fully in this report. Any projections, financial or otherwise, are estimates only; 
conditions, risks, and other factors may change, and projections may not be realized in the future. 
This report is intended for use by the client for planning purposes, and any use or reliance on this 
report by any party is at their sole risk and responsibility.       
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Section 1 – Introduction 
 
Nature-Based Solutions (NBS) are ways natural systems can be managed to mitigate carbon 
emissions and minimize negative impacts on ecosystem services. Forest carbon projects are one 
example of an NBS. When structured appropriately, a forest ecosystem can be managed such 
that it generates carbon credits. A carbon credit is a transferable instrument certified by 
government or independent bodies that represents an emission reduction (either from removals 
or avoided emissions) of one metric tonne of CO2 or an equivalent amount of other greenhouse 
gases (GHGs). A carbon offset constitutes a carbon credit used to compensate for emissions that 
occur elsewhere, outside the project boundary. The terms carbon offset and carbon credit are 
often used interchangeably. 
 
There are strong arguments for carbon credits as a tool for NBS1: 

• The private sector pays for carbon offsets, which allows capital to flow directly to priority 
areas that have been traditionally underfunded. 

• Robust carbon offset frameworks provide strong measuring, reporting and verification 
requirements to ensure projects result in genuine benefits. 

• Carbon offsets can lower compliance costs for entities that must reduce their carbon 
footprint. 

• Cost-effective mitigation options like offsets will help lower the overall costs of 
transitioning to a low-carbon economy. 

• Carbon offsets broaden sources of revenue for the forest sector beyond timber extraction 
(conservation-based management, for example). 

 
To ensure a carbon project delivers benefits to the atmosphere, credits must be: 

• Real: They are derived from actual, real-world projects. 

• Additional: Beyond GHG emission reductions or removals that would otherwise occur 
without revenue from sale of the carbon credits. 

• Verifiable: Emissions reductions and removals that can be demonstrated to have 
occurred. 

• Permanent: Emission reductions or removals are durable and protected over time. 
 
On March 14, 2022, a representative of the Coastal Douglas-fir Conservation Partnership (CDFCP) 
engaged with 3GreenTree on work to inform the CDFCP of the potential for developing a grouped 
carbon offset project within its area of operations. In addition to the Coastal Douglas-fir 
Biogeoclimatic Zone, the CDFCP encompasses the very dry maritime variant (CWHxm) of the 
Coastal Western Hemlock Biogeoclimatic Zone in its working boundary, as well as components 
of watersheds and islands that are related to CDF and CWHxm ecosystems. This work 

 
1After Monahan et al. 2020. NATURE-BASED SOLUTIONS: POLICY OPTIONS FOR CLIMATE AND BIODIVERSITY. Smart 
Prosperity Institute, University of Ottawa, Ottawa, ON. (institute.smartprosperity.ca). 
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encompassed two principal activities. The first activity was a mapping exercise to: (a) Delineate 
Private Managed Forested Land, Forest on Agricultural Land, Forest on First Nations Land, and 
Municipal Forests2; (b) Determine ownership of individual parcels within the private landbase, 
parcel size and carbon stock per ha; and (c) Assess how private land holdings might be assembled 
to form the nucleus of a grouped carbon offset project. The second activity was a review of 
potential carbon standards and methodologies as the basis for a grouped carbon offset project 
within the CDFCP operating area. 
 

Section 2 – The Mapping Exercise 
 
The project area consists of all private land holdings within the ~5000 km2 CDFCP operating area.  
 

GIS, Spatial Analysis, and Modeling 
 
Forest cover and associated attribute data are required for the carbon modelling. The primary 
source of forest attribute data in BC, the Vegetation Resource Inventory (VRI), does not, however, 
contain data for the ~2000 km2 (40% of the CDF zone) of private lands. A spatial database of basic 
forest cover information (vegetation type, broad age class, and aboveground biomass) was 
developed for lands within the study area using publicly available satellite imagery. The process 
involved the following steps: 1) Preparing a composite satellite image for the study area, 2) 
Classifying landcover types in the study area (and identifying forest area as either coniferous or 
deciduous), 3) Estimating broad age groups by forest type, and 4) Estimating aboveground 
biomass (AGB) in forested pixels. A detailed description of each step is provided below. 
 
 

1. Image preparation. A Sentinel-2 satellite composite image of the CDF zone was 
developed in Google Earth Engine (GEE) using a cloud masking algorithm (Google, 2022a). 
Cloudy areas in the composite were filled using images captured between June 1st to 
September 29th, 2021, while prioritizing more recent imagery. A total of 217 images were 
used to build the composite. The image resolution was 20m*20m and includes 10 
wavelength bands. 
 

2. Supervised landcover classification. Supervised classification involves 4 general steps: 1) 
Collecting training samples representative of the different landcover classes; 2) Training 
a classifier algorithm to develop relationships between spectral signatures and landcover 
classes; 3) Implementing the classification algorithm on the target imagery; and 4) 
Performing an accuracy assessment of the classification3. Six landcover classes were 
differentiated using this approach: coniferous forest, deciduous forest, non-forest 

 
2 Although the CDFCP is keenly interested in incorporating FNs lands within the project boundary, this will 
introduce considerable complexity to the project development process and is not considered at this time. 
3 Stehman, S. V, & Foody, G. M. (2019). Key issues in rigorous accuracy assessment of land cover products. Remote 
Sensing of Environment, 231, 111199. https://doi.org/https://doi.org/10.1016/j.rse.2019.05.018 
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vegetation (agriculture, grassland, greenspace, etc.), water, urban areas, and recently 
harvested areas (cutblocks)(Figure 1). 

Figure 1: Random Forest (RF) classified Sentinel-2 image showing the distribution of the six 
predicted landcover classes. This classification had an overall accuracy of 0.79, with a Kappa 

coefficient of 0.74. 
 

Landcover classes were well distributed and admixed throughout the study area (Figure 
1). Aggregations of coniferous stands can be found in northern and southern regions, 
and on some of the Gulf islands. This probably indicates areas with relatively little 
disturbance since conifers are indicative of late seral stage conditions (see also below).  
 
There are 6 principal owner types within the analysis area (Table 1). Collectively, they 
represent ownership of 76,135 properties. Private land is, by far, the most common 
ownership type, with municipal ownership a distant second. First Nations lands had the 
smallest ownership property count. Most properties are comprised of multiple parcels 
(Table 1). With respect to developing a grouped carbon project, many owners will have 
the option to enrol only selected parcels rather than being forced to make an all-or-
none decision as to participation. 
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Total area reflects the ownership count in that there is more than 230,000 ha in private 
hands, with 53,000 ha and about 29,000 ha, in provincial and municipal ownership, 
respectively (Table 1). All lands have a relatively high percentage of their area as forest, 
ranging from 73% (private land) to 89% (First Nations)(Figure 2). Of the forested area, a 
clear majority was comprised of conifer-dominated stands (Figure 2). Private lands are a 
striking exception, which tend to contain more deciduous-leading stands (54%). The 
latter is indicative of prior disturbance, particularly harvesting, which would have 
removed the late seral conifer component and been replaced by regeneration of early 
seral deciduous species. This is a natural process of stand development within the CDF 
following disturbance. Given enough time, many of these are likely to revert to late seral 
coniferous-dominated stands if there is sufficient understory conifer regeneration. This 
deciduous feature of private lands would not necessarily have a material impact from 
the perspective of carbon credit potential. It does serve to highlight the degree of 
historical disturbance on private land, emphasizes the ongoing threat of forest removal, 
and thereby establishes a strong argument for a carbon-based conservation project.   

 
Table 1. Ownership metrics within the analysis area. 

Ownership type Count Parcel multiplier Total area (ha) Biomass per ha 
Provincial 1,895 3.2 53,019 308.3 

Federal 230 2.7 11,179 294.9 
First Nations 53 16.7 5,210 323.0 

Municipal 6,260 2.2 28,918 225.8 
Private 49,281 5.7 230,461 232.1 

 

 
Figure 2. Forest-related metrics by low ownership category 
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3. Forest Age classification. Forest age is often well correlated with many forest attributes 

including carbon storage. Sentinel-2 imagery has been applied to estimate age class for 
temperate coniferous and deciduous stands4. While it is possible to estimate stand age 
using satellite imagery in conjunction with a statistical regression model, it was not 
practical for this landbase. Instead, broad stand age classes were estimated by analysing 
the spectral signatures of conifer and deciduous pixels with known ages from CDF areas 
with VRI data and using that information to parameterize a machine learning algorithm 
available in R. The parameterized algorithm was then used to predict age class on private 
land pixels (See Appendix 1 for details). Based on the spectral signatures for the conifer 
age classes, there are two spectrally distinct age groups: the “young” group, representing  

 
 
 
 
 
 
 
 

Predicted Coniferous Age Class Distribution  

 

 
4 Grabska, E., & Socha, J. (2021). Evaluating the effect of stand properties and site conditions on the forest 
reflectance from Sentinel-2 time series. PLOS ONE, 16(3), e0248459. 
https://doi.org/10.1371/journal.pone.0248459 
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Predicted Deciduous Age Class Distribution 

 

Figure 3: Predicted coniferous (upper panel) and deciduous (lower panel) age class distribution 
in the Coastal-Douglas-fir biogeoclimatic zone. 

 
 
 
 
0 – 40 years and the “older”, representing > 41 years (Figure 3). Younger age classes are 
located predominantly along the east side of Vancouver Island in both coniferous and 
deciduous forest types. This likely reflects the progressive urbanization of this region over 
the last several decades (see Figure 1). Older stands are predominant in northern and 
southern regions, and on the Gulf islands, indicating areas with little recent disturbance, 
and potentially good candidates for a carbon project. 

 
There are differences among the ownership types in forest age classes (Figure 4). Young 
stands (< 40 years old), either coniferous or deciduous, are relatively uncommon (< 20% 
by area), regardless of ownership. Old coniferous stands occupy the greatest area, except 
on private land. Not only is the total area of older stands much lower on private land but 
there are more older deciduous stands than conifers – the only ownership class in which 
this is the case. This trend is consistent with higher disturbance rates on private land 
(Figure 4). 
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Figure 4. Percent of total forested area in one of two age classes, young (< 40 years) and old (> 

40 years), of coniferous and deciduous stands. 
 

4. Aboveground Biomass Modeling. Aboveground biomass (AGB) is directly correlated with 
carbon storage in forests since biomass is comprised of 50% carbon.   Accordingly, the 
Sentinel-2 data were used to predict AGB across the study site. Prior research has 
demonstrated the capacity of satellite imagery for forest AGB prediction in Canadian 
forests5, including Sentinel-2 data6. As with forest age class prediction, AGB prediction 
was accomplished using the deciduous and coniferous VRI polygons as training data. A 
multiple linear regression model was developed using a built-in R modelling tool driven 
by the spectral data associated with VRI pixels with known ABG. The regression model (r2 
= 0.49) was applied to predict AGB in private land pixels. A detailed description of the 
approach is provided in Appendix 1. Figure 5 shows the total biomass per ha across the 
analysis area. Private lands had among the lowest biomass values (232.1 t/ha), slightly 
more than Municipal land (225.8 t/ha) but considerably less than Federal, Provincial, and 

 
5 Ahmed, O. S., Franklin, S. E., & Wulder, M. A. (2014). Integration of lidar and landsat data to estimate forest 
canopy cover in coastal British Columbia. Photogrammetric Engineering & Remote Sensing, 80(10), 953–961.  
Matasci, G., Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., Hobart, G. W., & Zald, H. S. J. (2018). Large-
area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat 
composites and lidar plots. Remote Sensing of Environment, 209, 90–106. 
https://doi.org/https://doi.org/10.1016/j.rse.2017.12.020 
6 Pandit, S., Tsuyuki, S., & Dube, T. (2018). Estimating Above-Ground Biomass in Sub-Tropical Buffer Zone 
Community Forests, Nepal, Using Sentinel 2 Data. In Remote Sensing  (Vol. 10, Issue 4). 
https://doi.org/10.3390/rs10040601 
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First Nations’ lands (Table 1). These values indicate that, despite the variation among 
ownership classes,  the landbase contains numerous parcels with substantial 
concentrations of carbon (Figure 5). Furthermore, mapped trends in biomass (Figure 5) 
reinforce the age class and species composition data presented above (Figure 3) – 
biomass values are highest in the oldest stands which tend to be coniferous-leading. 

 
Figure 5: Biomass values (tons/ha) predicted in areas within the forested portions of the 

Coastal Douglas-Fir zone.  
 
 
 
 

Section 3 - Evaluating Opportunities for Carbon Projects 
 
Based on the range of metrics evaluated to this point, any of the five ownership types are 
amenable to developing a forest carbon project. A key feature of any carbon project, however, 
is the principal of ‘Proof of Right’ (PoR). PoR can take a variety of forms, depending on the 
carbon standard, but in essence it constitutes the right to all and any GHG emission reductions 
or removals generated by the project. Typically, PoR resides with the landowner or any entity 
for which the latter has granted the carbon rights. This can be problematic for First Nations 
who, because of the complexities associated with aboriginal land interests, may have difficulty 
establishing an outright PoR claim. In British Columbia, a small number of First Nations who 
possess Reconciliation Agreements with the provincial government have negotiated 
Atmospheric Benefits Sharing Agreements (ABSAs). An ABSA defines how the carbon revenue 
from a project is shared between the parties. While provinces and the federal government have 
indicated interest and support in First Nations participating in the carbon offset market, PoR is 
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an ongoing issue that is not easily resolved. For the same reasons, government land outside of 
First Nation’s interests is not a practical option for developing forest carbon projects by the 
CDFCP. PoR is not problematic for fee simple private lands, however. This option is considered 
the most viable for developing carbon projects supported by the CDFCP, and its potential was 
evaluated, as follows7. 
 

1. The distribution of available land was classified by all of the ownership types (private, 
municipal, First Nations, etc.) and associated metrics, including total area and parcel size.   

2. Parcels were classified as to basic cover type, either forested or non-forested, and 
included all the stand attributes derived from the mapping exercises, as reported above. 

3. Unsuitable areas (e.g riparian setbacks, buildings, roads, etc.) were removed. 
4. Based on cover type, parcels were classified as to their suitability for harvesting versus 

reforestation.  
5. In one of the baseline scenarios, any harvesting was assumed to remove a total of 40% of 

the existing forest, over a 3-year period. To simplify calculations, carbon stored in 
harvested wood products was not included, nor were fossil fuel emissions from harvesting 
and processing. Hence, carbon emissions were the direct result of harvest removals.  

6. A second baseline was developed for non-forested land. In this case, carbon stocks were 
assumed to remain constant year over year. This assumption is not unrealistic where, for 
example, parcels are cropped annually, or used for grazing cattle.  

7. Parcels suitable for reforestation were planted with conifer species at a density of 1,000 
stems per ha. Growth rates were applied using locally appropriate yield curves for sites 
of ‘average’ productivity, from which carbon accrual rates (removals) were then 
calculated. 

8. The PlanID field in the Parcel Map database was used to aggregate parcels within a single 
ownership, when appropriate. This means that any frequency data for ‘properties’ 
reported below reflect the number of owners, not the number of underlying parcels. 

 
Carbon credits are generated from the difference in removals and avoided emissions between 
the baseline condition (the counterfactual scenarios in steps 5 and 6 above) and the project 
activities, either avoided harvest, or reforestation (as per step 7). Figure 6 shows generalized 
carbon accrual curves for avoided harvest and reforestation, over a 30-year time horizon. For 
avoided harvest, there is large tranche of credits that would be generated on a parcel in the first 
3 years, corresponding to the emissions from harvesting that would have occurred in the 
baseline, but which would no longer occur in the project activities. Thereafter, a lesser number 
of credits are generated reflecting the small relative difference in emission reductions between 
the baseline and project activities.  
 
In the case of reforestation, carbon credits accrue only very slowly initially when trees a small 
and slow growing. Once established, stands develop quickly as do their carbon stocks. 

 
7 For simplicity, the analysis excludes any municipal or other lands that may possess fee simple title. This does not, 
however, preclude the latter as eligible for inclusion in a grouped carbon project since the principles highlighted in 
this report are still applicable. 
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Figure 6. The annual flow of carbon credits over a 30-year period from a reforestation project 

and avoided harvest. Axes are not to scale. See text for details. 
 
Avoided harvest offers considerable opportunities for developing a grouped carbon project 
within the CDF. A total of 1139 properties8 were identified as having the potential generate at 
least 5000 carbon credits9 over a 30-year project length (Figure 7). Many more properties 
generated a smaller number of credits than this minimum (data not shown), but these would 
have to be considered as uneconomical to include within the grouped carbon project. 82 
properties (7.2%) had credits in excess of 50,000 t CO2e, and there are 215 (18.8%) that could 
generate 20,000 t CO2e, or more. Credit potential is linearly related to property size (data not 
shown) and so one caveat concerns the assumption that 40% of the land area is cleared within a 
3-year period (see above). For very large properties, this assumption may not be achievable, 
which would act to delay the credit flow into subsequent years. 
 
There were 614 properties available for reforestation credits greater than 1000 t CO2e over a 30-
year project length (Figure 7). Only 9 properties generated offsets of 19,000 t CO2e, or greater. 
Hence, not only is there a smaller number of properties available for reforestation, but their 
credit potential is much reduced versus avoided harvesting. In addition, to generate credits in 
larger amounts requires at least a decade after initial planting (Figure 6), which renders the 
economics of reforestation a challenge.  
 

 
8 As noted previously, frequency data for ‘properties’ reflect the number of owners, not the number of underlying 
parcels. 
9 1 carbon credit is the equivalent of removing 1 tonne CO2e. 
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Figure 7. Frequency of properties in relation to their carbon credit potential for avoided harvest 
(top panel) and reforestation (bottom panel).  
 

Strategies for building a grouped carbon project 
 
Under a grouped project, additional instances of the project activity (in this case, avoided harvest 
and/or reforestation), which meet pre-established eligibility criteria (fee simple ownership), may 
be added after the project is successfully validated. In the case of the CDFCP, two decisions 
require careful consideration: 1. Initial property selection, and 2. The build-out process. A 
detailed assessment is beyond this scope of work, and so the following provides only basic 
guidelines.  
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Initial property selection 
 
One, or more, of the larger avoided harvest properties should be used to anchor the grouped 
carbon project10. Property selection can be based on a variety of criteria, including: 

• The absolute number of credits generated across the 30-year project length. 

• The temporal pattern of credit generation (see Figure 6). Avoided harvest delivers 
immediate benefits but credits are much reduced over the long-term. Under 
reforestation, credits build progressive over time yield higher long-term benefits. This can 
pay off if carbon credit values increase significantly over time, which is expected. 

• Geographical location – is it better to select a property located in an area that has already 
experienced, or will experience, development pressure, or areas that are more ‘pristine’ 
and whose overall integrity is better preserved? 

• Does the property deliver benefits additional to carbon, such as habitat value or water 
quality? Certain habitat features or forest types within the CDF considered priorities for 
protection or rehabilitation could be prime candidates as an anchor property within the 
project. Examples include old growth or degraded forest types. 

 

Developing the build-out strategy 
 
The objective of a build-out strategy should be to maximize return on investment (financial, and 
otherwise) while ensuring that project risks are managed and held to acceptable levels. One 
approach is to develop a strategy that separates the decision-making process into is temporal 
and spatial components. 
 

Time 
 
If short-term return on investment is the predominant goal, then a strategy focused on avoided 
harvest makes the most sense. In this approach, property selection is exclusively on this project 
type, beginning with the largest available and building the portfolio progressively thereafter. 
Because of the pronounced decrease in credits (Figure 6), maintaining a healthy project cash flow 
depends on regular recruitment (see Figure 8 for a conceptual model of this concept). 
Fortunately, the population of potential properties is relatively large (Figure 7). Owner attrition 
(defaulting of responsibilities) is always a risk in grouped projects, but finances are less impacted 
by any given attrition event, at least once its initial credit flow has declined. 
 
Basing a build-out strategy largely on reforestation will be challenging and high risk. Property 
availability is much less than for avoided harvest, as are expected credit amounts (Figure 7). For 
a given property, attrition that occurs early has a much smaller impact on project finances than 
if it occurs later (Figure 6). Credit losses from late-stage attrition also take much longer to recoup 

 
10 i.e., the initial instance of the carbon project is built around (‘anchored’) by a single large property and then 
additional, smaller properties are added periodically. 
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by recruiting new project instances; this effect is also compounded by the resulting discount in 
cash flows. 
 
The most effective build-out strategy for hedging risk is a mixed portfolio of avoided harvest and 
reforestation. Avoided harvest generates short-term income and reforestation balances the 
potential long-term reduction in credit flows (see Figure 8).  

 
Figure 8. The carbon credit flows anticipated with the progressive addition of project instances 

(properties) under avoided harvest (1-3) and reforestation (A-C). Axes are not to scale 
 

Space 
 
If building out the project property portfolio is so important, which areas should be targeted for 
recruitment? Spatial configuration affects the risk that unplanned reversals will have a 
catastrophic impact on carbon stocks. For example, a series of contiguous (“clumped”) properties 
(see Figure 9) could all be lost in a single catastrophic wildfire. Conversely, connectivity and 
interior forest habitat are maximized by close localized grouping of properties, key quality 
attributes. Widely distributed properties (either uniform or random; Figure 9) will have low 
connectivity, but the trade-off is that they are not likely to be affected simultaneously by a single 
disturbance event. 
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Figure 9. Conceptual distributions of properties enrolled in a grouped carbon project. Each has 
benefits and costs. 
 
In summary, the trade-offs that define potential options should be articulated within a broader 
planning process and used to underpin the build-out strategy. A hierarchical approach will likely 
be necessary as a means of ordering priorities and integrating both the temporal and spatial 
components of the project build-out. 
 

Section 4 – Understanding Carbon Offset Credits 
 
The Carbon Marketplace 
 
There are two carbon markets: voluntary and regulatory. 

In Voluntary markets, companies or individuals buy carbon credits to demonstrate a 
commitment to reducing their carbon footprint and for corporate social responsibility goals.  

Voluntary markets are a viable option for a forest carbon project supported by the CDFCP: 

• These markets have proven to be robust despite significant economic and political 
headwinds. Recent reviews indicate strong growth potential. Ecosystem Marketplace11, a 
leading global source of information on environmental finance, markets, and payments 
for ecosystem services, reports traded carbon volumes in the Forestry and Land Use 
category in 2017, 2018, and 2019, of 16.6, 50.7, and 36.7 million tCO2e, respectively. 

 
11 https://www.ecosystemmarketplace.com/carbon-markets/ 
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Definitive data for 2020 were difficult to acquire as the global pandemic took hold. 
However, EM reports that Voluntary Carbon Market transactions hit a record $1 Billion in 
2021, despite COVID-19. 

• Offset prices trending positively, with quality projects currently selling credits at premium 
prices ($15 USD per t CO2e, and more). 

• Strong growth forecasted: demand from corporations with sustainability goals surging to 
1 billion metric tons of carbon dioxide equivalent (Gt CO2e) in 2030 and 5.2 Gt CO2e in 
2050 – the latter of which is equivalent to 10% of global emissions today10.  

• Well-established voluntary standards and associated methodologies. These are essential 
for ensuring project integrity and securing full market value.  

Price discovery is an ongoing issue in the carbon offset marketplace because: 1. The lack of a 
futures market inhibits transparency, 2. Project quality varies widely with prices reflected 
accordingly, and 3. Transactions are considered proprietary and not typically reported on 
financial spreadsheets. The Canadian compliance market, once established, will incentivize 
project development which should in turn tighten supply for non-covered entities (companies 
that are not subject to the emission limits), thereby driving up voluntary credit prices. The latter 
are still likely to trade at a discount to compliance credits, however, since they are not mandated 
and serve to satisfy voluntary ESG12 initiatives around net-zero and carbon-neutral commitments 
rather than ‘hard’ emission limits. The voluntary market is anticipated to grow exponentially over 
the next 30 years, with prices exceeding $50 per t CO2e (some projections are much higher). 
Demand for voluntary carbon credits should be sustained as governments and corporations strive 
to meet the goals of the 2015 Paris Agreement. At least one-fifth of the world's largest 2,000 
public companies have committed to meeting net-zero targets by mid-century or sooner through 
various initiatives, of which offsets will be one. The new Carbon Offset and Reduction Scheme for 
International Aviation (CORSIA), voluntary emissions offset system for airlines, should spur 
considerable demand for credits.  

A range of factors influence price, including project type and location, and co-benefits (additional 
to carbon). In the case of the CDFCP, a carbon project located within its operating area would 
have considerable appeal.  

• This zone has the highest number of species and ecosystems at risk in B.C., many of which 
are ranked globally as imperilled or critically imperilled. There are 271 known Red and 
Blue listed species within the CDF, and 110 species at risk. 

• Its old growth forests are among the highest carbon-storing ecosystems in the world. 

• Its forests play a critical role in building watershed and wildfire resilience against climate 
change.  

• The CDF has been most altered by human activities than any other zone in the province. 
Less than 1% of the CDF remains in old growth forests and 49% of the land base has been 
permanently converted by human activities.  

 
12 Environmental, social, and governance 
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• Its ecosystems are highly fragmented with only 11% currently protected in conservation 
areas.  

Compliance markets are the result of emission limits imposed by national and subnational 
governments on major industrial emitters. In 2016, the federal government established the Pan-
Canadian Framework on Clean Growth and Climate Change (the ‘Framework’), which is intended 
to provide a national plan to meet Canada’s 2030 emission reduction target (a 55% reduction in 
overall GHG emissions using a 2005 baseline). The 2018 Greenhouse Gas Pollution Pricing Act (the 
Act), legalized the Framework and the carbon pollution pricing system. The Act has two parts: 
Part 1 applies a charge to 21 types of fuel and combustible waste (Fuel Charge). Part 2 is an 
output-based pricing system (OBPS) for large industrial emitters (all facilities that emit 50,000 
tonnes or more per year of GHG, in CO2 equivalent units; ‘covered’ entities13). The OBPS applies 
in jurisdictions that do not meet the federal pricing and emissions reduction standards. With its 
carbon tax pegged to the federal carbon price, BC is not subject to the OBPS.  

Under the proposed Greenhouse Gas Offset Credit System Regulations14, a GHG offset system will 
be established as part of the government’s carbon pollution pricing system. Offsets are one 
option for compliance with the government’s emissions limit (or cap); a covered entity whose 
emissions exceed the cap can, as one option, purchase offsets equivalent to the differential. The 
2019-2021 compliance periods have no limits on the number of offsets that can be used, whereas 
the 2022 compliance period has a 75% limit15. Entities will be able to use offsets derived under 
the Federal GHG Offset System and Recognized Offset Units from approved provincial offset 
systems. There are, however, currently no approved methodologies for generating forestry 
offsets compliant with the federal program. Several are under active development, both 
provincially (e.g., the British Columbia Forest Carbon Offset Protocol v2; BC FCOP) and federally 
(an Improved Forest Management methodology) and could see release dates later this year16.  

Given that no forestry-based offsets have been created for trade within the Canadian compliance 
market, prices are unknown. It seems likely, however, that the Federal Government’s intended 
carbon pricing trends as part of the Canadian Output Based Pricing System, will serve to 
benchmark offset prices. In that regard, year 2022 pricing is $50 CAD per t CO2e, rising by $15 
annually until it reaches $170 CAD per ton in 2030. Once established, the Canadian compliance 
market will incentivize project development which should in turn tighten supply for non-covered 
entities (companies that are not subject to the emission limits), thereby driving up voluntary 
credit prices also. The latter may trade at a discount to compliance credits, however, since they 

 
13 Facilities that emit over 10,000 tCO2e in regulated sectors can opt-in to the OBPS at any time. OBPS sectors are: 
Oil and gas production, Mineral processing, Chemicals, Pharmaceuticals, Iron and steel, Mining and ore processing, 
Lime and nitrogen fertilizers, Food processing, Pulp and paper, Automotive, Electricity generation, and Cement. 
14 https://canadagazette.gc.ca/rp-pr/p1/2021/2021-03-06/html/reg1-eng.html 
15https://www.ieta.org/resources/Resources/CarbonMarketBusinessBrief/2021/CarbonMarketBusinessBrief_Cana
daOBPS2021.pdf 
16 Federal protocols will be applicable in all provinces and territories except jurisdictions in which the same project 
activity is covered by a current protocol in a provincial or territorial offset program (once released, the BC FCOP 
therefore will be the required methodology for Improved Forest Management carbon projects in the province). 
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are not mandated and satisfy ESG initiatives around net-zero and carbon-neutral commitments 
rather than ‘hard’ emission limits. 

Forest Carbon Project Types 
Three different project types are eligible to produce forest carbon offsets; afforestation or 
reforestation, avoided conversion, and improved forest management (IFM) (Table 1). Project 
developers must be able to show that their forests are sequestering more carbon than a 
‘business-as-usual’ scenario across the three forest project types. Each forest project has 
different costs and benefits, and approaches to carbon accounting.  

Table 1. Types of forest carbon offset projects. 

 

Carbon Credit Registries 
The serialization of carbon credits occurs on a registry. Registries require projects undertake a 
formal validation and verification process to ensure integrity of the resulting credits. Five 
registries potentially suitable for CDFCP consideration are Verra, The American Carbon Registry, 
The Climate Action Reserve, and the British Columbia Carbon Registry (not yet accepting new 
projects).  

Verra (formerly the Verified Carbon Standard)  
Once credits have been certified, they are issued on the registry as Verified Carbon Units (VCUs). 
VCUs can be sold on the registry or the spot market and retired by individuals and companies to 
offset emissions. Verra is the world’s most widely used voluntary GHG program. 

Permanence requirement: A minimum crediting period of 20 years (and a minimum project 
length of 30 years) with the option of renewing up to four times for a total of 100 years. Based 
on a project’s risk assessment, a percent of credits must be set aside as a buffer to compensate 
for unplanned reversals.  

Aggregated (Grouped) Projects are permitted. The requirements are: 

Project Type Description 

Afforestation/Reforestation (AR)  
 

• Projects involve restoring tree cover to previously 
non-forested land.  

• Requires significant site preparation and 
maintenance 

Avoided Conversion (AC) 
 

• Prevent land-use change - the conversion of 
forested land to non-forested land.  

• AC project developers must demonstrate that the 
forested land is under significant threat of 
conversion for an AC project to be viable. 

Improved Forest Management (IFM) 
 

• Land management activities that increase or at a 
minimum maintain the current level of carbon 
stocking. Avoided harvest is one example. 
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• Predetermined eligibility. The project proponent sets the geographic boundaries for the 
grouped project, including where new project activity instances (i.e., individual landowners) 
may be added, and establishes criteria for determining the eligibility of future instances.  

• Complete initial validation. The project proponent contracts an independent 
validation/verification body (VVB) to assess the grouped project and whether the eligibility 
criteria are appropriate for determining the validity of future instances. 

• Undergo verification. The project proponent contracts a VVB to ensure the emission 
reduction or removals are real. 

• Add new instances. The project proponent may include new project activity instances during 
a verification event.  

Verra has several methodologies suitable for projects within the CDF zone. Three examples are 
VM0010, VM0012, and VM0034. 

American Carbon Registry (ACR)  
The American Carbon Registry is a registry for both the voluntary market and the California Air 
Resources Board compliance market. It was the first voluntary greenhouse gas registry in the 
world. Most ACR projects are situated within the conterminous US. 

Permanence requirement: A minimum commitment of 40 years for Improved Forest 
Management projects. Any potential loss of sequestered carbon must be addressed by means of 
either a buffer pool or insurance. The risk assessment is made following the ACR Tool for Risk 
Analysis and Buffer Determination. 

Aggregated Projects: While aggregation is allowed, projects are advised against aggregating 
multiple forest types, or utilizing a geographic region that is overly large.  

One ACR methodology is applicable to private lands within Canada. 

Climate Action Reserve (CAR) 
CAR is a carbon registry that operates for the voluntary carbon market and serves as an Offset 
Project Registry for California’s compliance cap-and-trade program.  

Permanence requirement: Crediting period lengths depend on the project methodology. For 
most non- sequestration projects, there is a 10-year crediting period that may be renewed one 
time for a maximum of two 10-year periods, or 20 years total. For sequestration projects, the 
crediting period may be up to 100 years. 

Aggregated Projects: Aggregation of projects is allowed. Only parcels of less than 5,000 acres may 
enroll in an aggregate. Each participant in the aggregate registers independently and holds a 
separate account on the Reserve software system. There are no aggregation projects listed as of 
2018. 

CAR has two methodologies applicable within Canada. 
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British Columbia Offset Registry 
The British Columbia Forest Carbon Offset Protocol (BC FCOPv2) is the only methodology 
applicable to carbon-based forest projects on the Registry. BC FCOPv1 was withdrawn from use 
in 2015 and is being replaced by version 2. Having undergone a public review process, the latter 
may be released in 2022. Until its release, no forest carbon projects can acquire eligibility for 
registering offsets. 

Aggregated Projects: Indications are that BC FCOP v2.0 will permit aggregated forest carbon 
projects.  

Section 5 – Additional Considerations 
 

Conservation Easements 
 
A conservation easement is generally defined as a voluntary agreement between a landowner 
and an easement holder (a governmental agency or a qualified non-profit organization) whereby 
the former relinquishes certain rights to develop, encumber, or otherwise modify the land in 
favour of the latter. Conservation easements can enhance project appeal, reduce uncertainty 
(enhance permanence), and improve project credit flows. 
 
Key considerations for carbon offsets and conservation easements are17: 

• Carbon Credit Ownership (Proof of Right). All projects must demonstrate an entity’s right 
to all and any GHG emission reductions or removals generated by the project or program 
during the crediting period or verification period, as the case may be. In a grouped project, 
each participant will require Proof of Right (PoR) for that portion of the project area over 
which they exert control. The complexity introduced by multiple PoR claims will impact 
how land trusts draft conservation easements and develop and manage carbon offset 
projects. Ideally, to mitigate the risk of legal disputes with landowners, land trusts should 
secure unambiguous ownership of carbon rights through the conservation easement or 
another legally binding agreement with the landowner to avoid ambiguity over offset 
ownership. 

• Double Payments. To maintain the integrity of carbon offsets, it is imperative to avoid 
erroneous emission reduction claims from an offset project by paying landowners twice 
for the same action. Landowners can receive compensation for granting a conservation 
easement, typically through tax incentives18, but they might also qualify for carbon credits 

 
17 https://wecprotects.org/wp-content/uploads/2020/11/Carbon-Offsets-in-Conservation-Easements.pdf 
18 The federal ecological gift program, for example: https://www.canada.ca/en/environment-climate-
change/services/environmental-funding/ecological-gifts-program/overview.html. Also, the Islands Trust Fund 
provides property tax exemptions of up to 65% for portions of land that are subject to a conservation covenant 
registered under the Natural Areas Protection Tax Exemption Program (NAPTEP). This program covers many of the 
Gulf Islands. For more information see 
http://www.islandstrustfund.bc.ca/initiatives/privateconservation/naptep.aspx . A broader discussion of land sale 
and gifting options is provided at: https://ltabc.ca/wp-content/uploads/2017/UP/Natural%20Legacies-

https://wecprotects.org/wp-content/uploads/2020/11/Carbon-Offsets-in-Conservation-Easements.pdf
https://www.canada.ca/en/environment-climate-change/services/environmental-funding/ecological-gifts-program/overview.html
https://www.canada.ca/en/environment-climate-change/services/environmental-funding/ecological-gifts-program/overview.html
http://www.islandstrustfund.bc.ca/initiatives/privateconservation/naptep.aspx
https://ltabc.ca/wp-content/uploads/2017/UP/Natural%20Legacies-%20Conservation%20Covenants%20in%20BC%20-%20Financial%20Benefits%20from%20Nature%20Conservations.pdf
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after undertaking certain activities—or, in many cases, restricting certain activities—on 
their land to increase the carbon stocks or to avoid the release of carbon and other GHG 
emissions. These issues are addressed as follows: 
1. Include in the carbon offset project baseline the details of any conservation easement 

recorded more than one year prior to the establishment of the carbon offset project. 
This ensures the project will not credit the landowner for activities that are already 
required by an existing conservation easement. Conservation easements recorded 
after the project start date are treated as supporting the project and do not affect the 
baseline emission calculations. 

2. By ensuring Proof of Right is clearly established at the project outset such that only a 
single entity can legally claim any resulting credits. 

• Valuation. Conservation easements associated with carbon offset projects may 
complicate the interpretation of easement appraisals. Price discovery in terms of credit 
value is a challenge. Typically, carbon offsets are not ranked as highest and best use and 
so appraisal value is derived from assessing the underlying timber resource.  

• Funding Considerations. Entities funding conservation easements may seek 
compensation in a variety of ways: through direct payment and/or as a share of the 
resulting credit tranche. Each approach has implications for the easement holder in terms 
of payment scheduling and timing. 

 

Case study 1 – Cold Hollow Carbon and the Vermont Land Trust19 
 
The Vermont Land Trust is a statewide, member-supported, non-profit land conservation 
organization. Since 1977, the Trust has protected 2,000 parcels of land covering nearly 600,000 
acres 
 
In partnership with the Cold Hollow to Canada group, the University of Vermont, and The Nature 
Conservancy of Vermont, the Vermont Land Trust piloted the first forest carbon aggregation 
project in the US. The project spanned 8,625 acres across 12 parcels and has 10 landowners 
collectively enrolled in the voluntary carbon market through the American Carbon Registry (ACR).  
 
Key learnings from the Vermont Land Trust project:  

• A strong, sustainable forest management, conservation, and climate change mitigation 
ethic in Vermont was the foundation for carbon project development.  

• Partnerships and patience were critical to success and in building capacity.  

 
%20Conservation%20Covenants%20in%20BC%20-
%20Financial%20Benefits%20from%20Nature%20Conservations.pdf. 
 
 
19 https://www.coldhollowtocanada.org/fileadmin/files/Case_Profile_Cold_Hollow_Carbon_VT_03_24_21_.pdf 
 

https://ltabc.ca/wp-content/uploads/2017/UP/Natural%20Legacies-%20Conservation%20Covenants%20in%20BC%20-%20Financial%20Benefits%20from%20Nature%20Conservations.pdf
https://ltabc.ca/wp-content/uploads/2017/UP/Natural%20Legacies-%20Conservation%20Covenants%20in%20BC%20-%20Financial%20Benefits%20from%20Nature%20Conservations.pdf
https://www.coldhollowtocanada.org/fileadmin/files/Case_Profile_Cold_Hollow_Carbon_VT_03_24_21_.pdf
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• Mitigating risk for forestland owners participating in an aggregated carbon project is 
critical. 
Forestland owners preferred a direct contractual relationship with Vermont Forest 
Carbon Company, a subsidiary of VLT created through the course of the project, as a 
way to mitigate risk rather than a pooled ownership structure. 

• Land trusts and their subsidiaries can serve as an appropriate home for carbon co-op 
projects.  

• Social capital, personal relationships, and trust were key to success. 
 

This approach has value as a template for the CDFCP. 
 

Case study 2 - Aggregation of Carbon Credits from No-Till and Reduced Till Agricultural 
Practice 
 
Carbon offsets generated from the direct and indirect reductions of greenhouse gas (GHG) 
emissions through no-till and reduced till cultivation systems on agricultural lands in Alberta. The 
reduction in frequency and intensity of tillage under a reduced till or no-till system results in 
reduced fossil fuel use by farm equipment, reduced fossil fuel use for the production of fertilizer 
and other amendments, and a decrease in the amount of soil carbon and nitrogen released to 
the atmosphere. 
 
The project aggregates individual farm operators to provide larger quantities of carbon offsets 
for purchase. The carbon offsets are generated in accordance with the Quantification Protocol 
for Tillage System Management, under the Alberta Emissions Offset Registry (AEOR).  
 
Key point learned from Alberta Offset System Tillage Systems Protocol: 

• The aggregation project consists of pooling the carbon offsets generated on individual 
fields within individual farm operations. As such, the project site can vary from year to 
year and may be composed of several farm fields. 

• The Quantification Protocol for Tillage System Management uses an adjusted baseline. 
The adjusted baseline accounts for carbon gains from current adoption levels of reduced-
till and no-till practices within the given region, adjusted with farm census data from 
Statistics Canada. Therefore, project proponents do not have to prove a particular 
baseline at the project start date. 

 
The conditions and circumstances of this program appear to have little value as a template for 
the CDFCP. 
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1. Introduction: 
The rationale for this analysis is that forest cover and attribute data is required for carbon 

modelling in the CDF zone. However, the primary source of forest attributed data in BC used for 

carbon modelling, the Vegetation Resource Inventory (VRI), does not provide data for private 

lands. In the ~5000 km2 study site, VRI data only covers ~3000km2, leaving approximately 

~2000km2 (40%) of the area without forest attribute data. As such, the goal of this analysis is to 

provide forest attribute data to support carbon modelling in the Coastal Douglas-Fir (CDF) zone 

on the cost of British Columbia. This goal was achieved by completing the following objectives: 

1) classify landcover types in the study area; 2) estimate stand age by forest type (conifer vs. 

deciduous); 3) estimate aboveground biomass (AGB).  

2. Satellite Imagery: 
The baseline data used in this analysis was Sentinel-2 satellite imagery. A Sentinel-2 cloud free 

composite was developed in Google Earth Engine (GEE) using a cloud masking algorithm 

recommended for Sentinel imagery (Google, 2022a). Cloudy areas in the composite were filled 

using images captured between June 1st to September 29th, 2021, prioritizing more recent 

imagery. A total of 217 images were used to build the composite, with median reflectance values 

used. The composite included bands 2 – 8a, in addition to bands 11 and 12, all of which were 

resampled to a 20m spatial resolution (European Space Agency, 2022).   

3. Supervised Landcover Classification 
3.1 Background 
Supervised landcover classification was performed to differentiate between six landcover classes 

in the study site: coniferous forest, deciduous forest, non-forest vegetation (agriculture, 

grassland, greenspace, etc.), water, urban areas, and recent cutblocks (including barren soil). 

These landcover classes were selected because they represent major components of the landscape 

and are feasible to differentiated in terms of spectral properties. 

Supervised landcover classification has historically been performed for many environmental 

management and forestry purposes. Supervised classification involves 4 general steps: 1) 

collecting training samples representative of the different landcover classes; 2) training a 

classifier algorithm to develop relationships between spectral signatures and landcover classes; 

3) implementing the classification algorithm on the target imagery; 4) performing an accuracy 

assessment of the classification (Stehman & Foody, 2019). Excluding sample polygon collection, 

the classification process was performed using GEE. A link to the complete GEE script is 

provided in the Appendix. 

 

3.2 Collecting Landcover Samples 
Landcover sample polygons were collected in ArcGIS Pro by identifying representative area in 

the Sentinel-2 image for each landcover type. Table 1 provides a summary of the 144 landcover 

samples collected for this study. Sample polygons were sampled to represent natural variation in 

each landcover class and were intentionally spread evenly throughout the study area. Figure 1 

provides a map of landcover sample polygons. Non-forested sample polygons were collected by 

simply identifying representative landcover examples in the Sentinel-2 image and verifying their 

class using reference high resolution imagery provided in the ArcGIS Pro basemap. For forest 

classes (conifer and deciduous), the 2020 VRI dataset provided by the Government of British 
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Columbia was used as reference for collecting sample polygons (Government of British 

Columbia, 2021). Since the VRI is not comprehensively updated every year, only polygons 

updated as recent as 2017 were used as reference to distinguish between coniferous and 

deciduous forested areas. 

 

Table 1: Summary of sample polygons collected in the biogeoclimatic zone for the purpose of 

supervised landcover classification. The total sampled pixels refers to the sum of pixels extracted 

from the Sentinel-2 composite within each of the sample polygons. 
Landcover Code Landcover Class Number of Polygons Total Sampled Area 

1 Water 11 6.16 

2 Cutblock 13 1.19 

3 Non-Forest Veg 21 3.82 

4 Urban 34 5.04 

5 Coniferous 21 6.31 

6 Deciduous 44 6.26 

 

 
Figure 1: Landcover samples (n = 144) retrieved from the Coastal-Douglas-Fir biogeoclimatic 

zone for the purpose of supervised landcover classification. Note that the size of each sample 

polygon is exaggerated in this map to make their location more apparent. 

3.3 Training Classifier Algorithm 
In supervised landcover classification, the classifier is typically a machine learning algorithm 

that learns through training data how to differentiate between various landcover classes. This 

analysis tested three common classifier algorithms in GEE: Random Forest (RF), Classification 

and Regression Trees Classification (CART), and Support Vector Machines (SVM). An essential 

factor in landcover classification is differences between the spectral signatures of each landcover 
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class (Rujoiu-Mare et al., 2017). Figure 2 provides the spectral signatures of each landcover 

class. To train the classifier algorithm, a random subset of 70% of the sample polygons was 

selected, with even representation of each landcover type. Within each training polygons, the 

Sentinel-2 image pixels were extracted and then further randomly subsampled in GEE to train 

the classifier.  

 

 
Figure 2: Mean reflectance of each landcover class for each of the 10 Sentinel-2 bands used in 

the classification ranging from 490 – 2190 nm. This figure provides an approximation of the 

spectral signatures of each landcover class. Note that atmospheric effects distort the spectral 

signatures of each landcover’s mean reflectance at a given wavelength. 

 

3.4 Implementing Classifier 
Each classifier was implemented using their respective function in GEE (Google, 2022b). The 

RF, CART, and SVM classifiers were selected for use in this study since they are commonly 

used in satellite imagery supervised landcover classification and have been demonstrated to be 

effective by previous research (Abdi, 2020; Shao & Lunetta, 2012). Generally, machine learning 

algorithms perform better when their hyperparameters are subjected to tuning and 

experimentation. However, this was beyond the scope of this analysis, so the generic parameters 

for each algorithm was used. The only parameter which was altered was the number of decision 

trees generated for RF, which was found to be optimal at 50 trees. 

 

3.5 Accuracy Assessment 
The 30% validation subset from the original sample data was applied to evaluate the accuracy of 

the three classification algorithms. In landcover classification, accuracy assessment involves the 

creation of a confusion matrix, which summarizes whether each pixel in the validation data was 

classified correctly or incorrectly by the classifier algorithm. The confusion matrices for each 

classifier can be viewed by running the GEE script (see Appendix). The confusion matrices for 

each classifier are provided in Table 2. From the confusion matrices, three accuracy metrics can 

be calculated: User’s Accuracy (UA), Producer’s Accuracy (PA), and Overall Accuracy (OA). 

The UA corresponds to errors of commission (i.e., pixels predicted as the wrong landcover 

class), whereas the PA corresponds to errors of omission (i.e., pixels omitted from the correct 
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landcover class).  The OA represents the proportion of correctly classified pixels across all 

landcover classes.  

 

The three classifiers had similar OA, but had differing UA and PA across the landcover classes. 

Since the primary objective of this classification was to differentiate between forested and non-

forested areas, the accuracy metrics of primary concern are the UA and PA for coniferous and 

deciduous forest classes. Overall, the RF algorithm was selected as the most accurate classifier 

because it had an OA of 79%, in addition to the highest UA and PA for the coniferous and 

deciduous forest classes. Specifically, of the 13,040 pixels classified for conifer and deciduous 

forests, the RF algorithm only mis-classified 62 pixels (0.5%) as non-forest landcover types 

(non-forest vegetation and urban). Most of the error associated with the RF classified can be 

attributed to misclassification between the two forest classes. The RF algorithm classified 17% 

of deciduous pixels as coniferous, and 28% of coniferous pixels as deciduous. Finally, the RF 

algorithm had an associated Kappa coefficient of 0.74, meaning that there is a 26% probability of 

this level of agreement between the predicted and observed values occurring by random chance 

(McHugh, 2012). 

 

In sum, the RF algorithm was able to effectively distinguish between forest and non-forest 

classes but was not particularly effective at distinguishing between coniferous and deciduous 

stands. This may be because the sample polygons used to train the RF algorithm mostly 

contained mixed stands that were not purely coniferous or deciduous. For the purpose of this 

analysis, the accuracy of the RF landcover classification was deemed sufficient. Figure 3 

provides the final RF landcover classified image. 

 

 

 

 

 

 

 

Table 2: Confusion matrices for the three classifier algorithms implemented for a supervised 

landcover classification of the Coastal-Douglas-Fir biogeoclimatic zone. For each classifier, the 

top row of landcover classes represent the observed data and the left column of classes represents 

the predicted data. The bolded diagonal cells are the number of correctly classified pixels for a 

given landcover class. The shaded rows and columns provide the users and producers accuracies 

for each landcover class. 

 

RF Confusion Matrix 

  Observed Values  

 

 Water Cutblock Non-Forest Vegetation Urban Coniferous 
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Water 3058 0 0 0 0 0 100% 

Cutblock 0 476 573 48 0 0 80% 

Non-

Forest 
0 93 3537 1110 0 872 80% 
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t
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n 

Urban 0 25 243 6521 4 355 85% 

Coniferou

s 
0 0 0 0 5812 1164 78% 

Deciduous 0 0 56 6 1683 4319 64% 

 Producer’

s 

Accuracy 

100% 43% 63% 91% 83% 71%  

SVM Confusion Matrix 

  Observed Values  
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Water 3058 0 0 0 0 0 100% 

Cutblock 0 626 469 2 0 0 85% 

Non-Forest 
Vegetation 

0 79 4079 935 0 519 75% 

Urban 0 29 806 6247 6 60 87% 

Coniferous 0 0 0 0 5795 1181 74% 

Deciduous 0 0 92 1 2021 3950 69% 

 Producer’

s 

Accuracy 

100% 57% 73% 87% 83% 65%  

CART Confusion Matrix 

  Observed Values  
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Water 3058 0 0 0 0 0 100% 

Cutblock 0 541 427 129 0 0 71% 

Non-Forest 

Vegetation 
0 105 3238 1201 49 1019 77% 

Urban 0 115 465 6194 25 349 82% 

Coniferous 0 0 3 0 5886 1087 76% 

Deciduous 0 3 78 8 1840 4135 62% 

 Producer’

s 

Accuracy 

100% 49% 58% 87% 84% 68%  
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Figure 3: Random Forest (RF) classified Sentinel-2 image showing the distribution of the six 

predicted landcover classes. This classification had an overall accuracy of 0.79, with a Kappa 

coefficient of 0.74. 

4. Forest Age Classification 
4.1 Background 
Carbon storage in a stand is related to forest age class. As such, in areas without VRI data, it is 

also necessary to estimate stand age. Previous research has demonstrated that Sentinel-2 imagery 

can be applied to estimate age class for temperate coniferous and deciduous stands (Grabska & 

Socha, 2021). While it is possible to estimate stand age using of satellite imagery in a regression 

model, this was beyond the scope of this analysis. Instead, stand age was estimated for conifer 

and deciduous stands using age classes based on the VRI data. 

 

4.2 Age Classes 
Age class models were developed using the available VRI polygons updated since 2017 

including 737 polygons for conifers (total of 78.4 km2) and 45 polygons for deciduous stands 

(total of 5.2 km2). The pixels in the Senitel-2 image intersecting with the sample polygons are 

shown in Figure 4. Spectral signatures for each age class and for each tree type were estimated 

and are provided in Figure 5. Based on the spectral signatures for the conifer age classes, there 

are two spectrally distinct age groups: the “young” group, which includes the 1 and 2 age classes, 
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representing 0 – 40 years and the “older” group, which includes the 3 – 9 age classes, 

representing 41 – 251 (or greater) years. Thus, the younger and older aggregated age classes 

were selected since there was too much spectral overlap for more specific age class prediction. 

While there were greater differences between the deciduous VRI age classes, the same 

aggregated age classes were applied to deciduous stands for consistency. Figure 5 shows that for 

both coniferous and deciduous stands, the spectral difference between younger and older stands 

is sufficient for differentiation using the Sentinel-2 imagery. 

 

Coniferous VRI Samples Deciduous VRI Samples 

 
 

 
 

Figure 4: Sample pixels (shown in red) used for developing coniferous and deciduous forest age 

class prediction model for the Coastal Douglas-Fir biogeoclimatic zone. 
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Figure 5: Spectral signatures of Vegetation Resource Inventory (VRI) age classes and 

aggregated age classes for coniferous and deciduous stands. The “Young” aggregated age class 

includes the 1 and 2 age classes, which represents the 0 – 40 years age range. The “Older” 

aggregated age class includes the 3 – 9 age classes, which represents the 41 – 251 (or greater) 

years age range. 

 

4.3 Preparing Data for Age Class Modelling 
Instead of GEE, aggregated age class prediction was performed using R software (v. 4.1.3). All 

age class modelling was performed separately for coniferous and deciduous trees. For age 

prediction, all the Sentinel-2 image pixels within the VRI sample polygons were extracted and 

divided into training (70%) and validation (30%) subsets. Since for both coniferous and 

deciduous stands there were far more older samples than there was younger, the training and 

validation samples of older pixels were randomly sampled such that the sample size for young 

and older age classes were even.  

 

4.4 Development of Age Class Model 
While there are many options for machine learning modelling for satellite imagery based 

prediction such as RF, CART, and SVM, an extreme gradient boosting (XGB) algorithm was 

selected for age class prediction (Tianqi Chen, 2022). The XGB approach was chosen because it 

is well suited for large datasets and has been shown to be effective for Sentinel-2 imagery forest 

classification (Abdi, 2020). In addition, the XGB is especially useful for binary machine learning 

classification (Bhagwat & Shankar, 2019) of satellite imagery. 

 

The XGB model was developed within the caret package in R (Kuhn, 2022). Model training was 

performed using cross validation with three folds and a random search function. The linear 

version of the algorithm was implemented (xgbLinear) with default hyperparameters. All 

Sentinel-2 bands were used as predictor variables in the algorithm except for bands 11 and 12 

since these had minimal spectral differences for the young and older age classes. 

 

 

4.5 Accuracy Assessment of Age Class Model 
An accuracy assessment was performed to evaluate the XGB performance on the validation data.  

The XGB model was implemented on the validation data, and classified the coniferous and 
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Age 
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deciduous age classes with accuracies of 85% and 81%, respectively (p < 2-16; Kappa = 0.70 and 

0.62, respectively). Errors of omission and commission were spread evenly between young and 

older age classes for both coniferous and deciduous forests, with UA and PA of 78% for both age 

classes and both tree types. 

 

4.6 Implementation of Age Class Model 
The XGB age class model was then implemented for coniferous and deciduous species 

separately using the Sentinel-2 image. Specifically, the each XGB model for coniferous and 

deciduous forests were only applied to Sentinel-2 pixels that were previously classified as their 

respective landcover class in the GEE RF model. The resulting wall-to-wall prediction of age 

class by tree type is provided in Figure 6. The predicted forest composition by tree type and age 

combining the GEE landcover classification and XGB age prediction is as follows:  12% Young 

Conifer; 46% Older Conifer; 14% Young Deciduous; 28% Older Deciduous. 

 

Annotated versions of the complete age class prediction R scripts for both deciduous and 

coniferous stands are included as supplementary HTML, PDF, and RMD files. 

 

Predicted Coniferous Age Class Distribution  

 

 

 

 

Predicted Deciduous Age Class Distribution  
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Figure 6: Predicted coniferous and deciduous age class distribution in the Coastal-Douglas-Fir 

biogeoclimatic zone. 

 

5. Above Ground Biomass Modelling 
 

5.1 Background 
Above ground biomass (AGB) is another important predictor of carbon presence in a forest. To 

support CDF carbon modelling, this analysis also used Sentinel-2 data to predict AGB per 

hectare across the study site. Substantial prior research has demonstrated the capacity of satellite 

imagery for forest AGB prediction in Canadian forests (Ahmed et al., 2014; Matasci et al., 

2018). Specifically, research has applied Sentinel-2 data for effective AGB mapping(Pandit et 

al., 2018). 

 

5.2 Data Preparation for Modelling 
Similar to the forest age class prediction, AGB prediction was accomplished using the same set 

of deciduous and coniferous VRI polygons updated since 2017. One challenge for this approach 

is that the area of each sample polygon varies substantially, from less than 0.1 km2 to 1.5 km2. 

Summarizing the biomass per ha over larger polygons leads to increased noise and makes it more 

challenging to develop a relationship between spectral properties and biomass. Another 

important challenge is the small amount of deciduous sample data containing biomass estimates. 

Of the VRI polygons used for age prediction, coniferous forest had 315 samples (54.0 km2), and 

deciduous forest had only 33 samples (3.5 km2). Given the small number of samples, and the fact 

that many stands in the study site are mixed, deciduous and coniferous samples were aggregated 

for biomass modelling. For each sample polygon, the mean reflectance value was extracted for 
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each Sentinel-2 band within each plot. The 348 samples were then divided into training (70%) 

and validation (30%) sets. 

 

5.3 Spectral Indices 
While the Sentinel-2 band measured reflectance values can be sufficient as predictor variables 

for AGB forest biomass, most studies include spectral indices as additional predictor variables 

(Ahmed et al., 2014; Askar et al., 2018). Spectral indices are mathematical band combinations 

that exaggerate certain spectral properties. For example, the Normalized Difference Vegetation 

Index (NDVI) is a common spectral index that combines red and near infrared wavelengths and 

is used as a proxy for vegetation presence and health. While a wide variety of spectral indices 

have been applied to predict AGB biomass, most studies tend to include indices that represent 

wetness and vegetation characteristics (Matasci et al., 2018). As such, this analysis included four 

spectral indices that capture wetness and vegetation characteristics: NDVI, Enhanced Vegetation 

Index (EVI), Normalized Difference Moisture Index (NDMI), and Simple Ratio of Red to Near 

Infrared (SR). While the inclusion of additional spectral indices may be able to improve model 

accuracy, the relatively small sample size of only 348 samples limits the number of predictor 

variables. 

 

5.4 Biomass Model Development and Implementation 
Similar to forest age, AGB biomass can be modelled using a variety of machine learning 

methods. For this application, RF was selected because it is commonly used for AGB prediction 

(Matasci et al., 2018; Pandit et al., 2018). RF was implemented using the caret package in R 

using cross validation with five folds and a grid search function. Three hyperparameters were 

tuned to optimize model performance: 1) number of variables to use at each split in each decision 

tree (MTRY); 2) maximum number of terminal nodes trees in the forest can have 

(MAXNODES); 3) number of decision trees generated (NTREE). The optimal hyperparameter 

tunings were as follows: MTRY = 9; MAXNODES = 15; NTREE = 2000. All other RF 

parameters were left as default. 

 

5.5 Biomass Model Accuracy Assessment 
The optimized RF model had an R2 of 0.49 and a AGB biomass Root Mean Squared Error 

(RMSE) equal to 119.5 tons/ha. To evaluate the accuracy of the AGB model, the developed RF 

model was tested on the training data set. The RF model RMSE was computed for the validation 

data and was compared to that calculated during the cross validation of the training data. The 

AGB biomass RMSE computed for the validation data was 107.1 tons/ha. Since the difference in 

RMSE between training and validation data was negligible, the model was deemed to effectively 

generalize to new data and was thus acceptable for the purpose of this analysis. Figure 7 shows a 

fitted line plot comparing observed versus predicted biomass. The RF biomass model was then 

applied to all of the pixels classified as coniferous or deciduous forest in the GEE landcover 

classification. The wall-to-wall biomass prediction is provided in Figure 8. 
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Figure 7: Fitted line plot showing the Vegetataion Resource Inventory observed biomass values 

versus Random Forest (RF) predicted biomass values for 105 validation samples. The RF model 

had an R2 = 0.49 and an RMSE of 107.1 tons/ha. 

 

 
Figure 9: Biomass values (tons/ha) predicted in areas within the Coastal Douglas-Fir zone 

classified as forested. The values were predicted using a Random Forest algorithm with a R2 = 

0.49 and a Root Mean Squared Error of 107.1 tons/ha. 
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Appendix 2 
 

Google Earth Engine (GEE) Supervised Landcover Classification Script Link: 

https://code.earthengine.google.com/f941a75ef5f61642dab4cf08ade6677b 
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